Tutorials
The PEtab.jl tutorials cover how to set up parameter-estimation problems with various features, and how to run and configure parameter estimation.
Creating a parameter estimation problem
Simulation conditions: Measurements collected under different experimental conditions (e.g. simulations use different initial values).
Pre-equilibration: Enforce a steady state before the model is matched against data (pre-equilibration).
Simulation condition-specific parameters: Subset of model parameters which are estimated take different across simulation conditions.
Observable and noise parameters: Observable/noise parameters in
PEtabObservableformulas that are not part of the model system (e.g. scale/offset), optionally time-point-specific.Events/callbacks: Time- or state-triggered events/callbacks.
Import PEtab standard format: Load problems from PEtab standard format.
Model definition: More on defining
ReactionSystemandODESystemmodels can be found in the Catalyst.jl and ModelingToolkit.jl documentation respectively.
Parameter estimation
Parameter estimation extended tutorial: Extended tutorial on estimation functionality (e.g. multi-start, Optimization.jl integration).
Available optimization algorithms: Supported and recommended algorithms.
Plotting parameter estimation results: Plotting options for parameter estimation output.
Model selection: Automatic model selection with PEtab-Select.
Wrapping optimization packages: How to use a
PEtabODEProblemdirectly with an optimization package such as Optim.jl.Bayesian inference: Sampling-based inference (e.g. NUTS and AdaptiveMCMC).